International Journal of Hydrogen Energy, Vol.40, No.32, 10281-10292, 2015
Active screen plasma surface co-alloying of 316 austenitic stainless steel with both nitrogen and niobium for the application of bipolar plates in proton exchange membrane fuel cells
Austenitic stainless steel has been researched as a promising candidate material for bipolar plates in proton exchange membrane fuel cells. However, its interfacial contact resistance (ICR) is about 16 times higher that of the Department of Energy (DOE) target (10 mS Omega cm(2)), which leads to undesirable fuel cell performance. In this work, a new hybrid plasma surface engineering process, based on active screen plasma co-alloying, has been developed to simultaneously alloy 316 austenitic stainless steel (316 SS) surfaces with both nitrogen and niobium. The results demonstrated that the layer structure of the modified surfaces can be tailored by adjusting the treatment conditions. All the plasma treated 316 SS samples exhibited significantly reduced ICR below the DOE target of 10 mS Omega cm(2). The corrosion resistance of the N/Nb co-alloyed 316 SS was much better than active screen plasma nitrided and marginally better than the untreated material. Copyright (C) 2015, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications, LLC. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
Keywords:Proton exchange membrane fuel cells;Bipolar plates;316 stainless steel;Active screen plasma surface alloying;Nitrogen;Niobium