Journal of Adhesion Science and Technology, Vol.29, No.15, 1617-1627, 2015
Application of porous oxide layer in plastic/metal direct adhesion by injection molding
In this study, porous oxide layers were coated on aluminum sheets by plasma electrolytic oxidation (PEO) treatment. The PEO-treated aluminum sheets were then inserted and direct heated in the injection mold. The melting plastic penetrated and solidified in the micropores during the injection molding process, consequently achieving plastic/metal direct adhesion through micro-mechanical interlocking. The effects of the different surface morphologies of PEO coatings on plastic/metal adhesion were studied by shear test and microscopic characterizations. The microstructures were varied by changing PEO process parameters. The bonding strength was affected by the surface morphology changes, and the experimental results show that the surface porosity is a major factor in the direct adhesion. Reliable joints can be achieved on the porous coating, and the strength was proportional to the surface porosity. The shear strength in this study was in a range of approximately 3-8MPa with 7-20% surface porosity.
Keywords:plastic;metal;plastic/metal direct adhesion;injection molding;plasma electrolytic oxidation