화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.119, No.4, 416-420, 2015
Putative endoglucanase PcGH5 from Phanerochaete chrysosporium is a beta-xylosidase that cleaves xylans in synergistic action with endo-xylanase
A predicted endoglucanase gene (PcGH5) was cloned from Phanerochaete chysosporium, and expressed in Pichia pastoris. Although PcGH5 showed similarity with the conserved domains of a cellulase superfamily GH5, a beta-glucosidase/6-phospho-beta-glucosidase/beta-galactosidase superfamily, and an endoglucanase, recombinant PcGH5 exhibited a beta-xylosidase activity, rather than endoglucanase activity. Therefore, the predicted gene was named as PcXyl5. Further characterization of recombinant PcXyl5 showed not only catalysis of the hydrolysis of xylo-oligomers to xylose, but also displayed transglycosylation activity using alcohol as a receptor. Optimum pH of rPcXyl5 was found to be 5.5, whereas optimum temperature was 50 degrees C. rPcXyl5 increased reducing sugar release of birchwood xylan, beechwood xylan, and arabinoxylan by 6.4%, 13%, 15.8%, respectively, in synergistic action with endo-xylanase. Interestingly, the late addition of rPcXy15 into reaction with endo-xylanase resulted in a larger increase of reducing sugar release from pretreated barley straw that addition at the start or by treatment with endo-xylanases alone. The increases observed were 6.3% and 13.8%, respectively, showing a great potential application for hemicellulose saccharification. (C) 2014, The Society for Biotechnology, Japan. All rights reserved.