화학공학소재연구정보센터
Journal of Catalysis, Vol.335, 175-186, 2016
The effect of sodium on the structure-activity relationships of cobalt-modified Cu/ZnO/Al2O3 catalysts applied in the hydrogenation of carbon monoxide to higher alcohols
A series of Co-modified Cu/ZnO/Al2O3 methanol synthesis catalysts with different Na loadings was prepared and applied in higher alcohol synthesis (HAS) at 280 degrees C, 60 bar and a ratio of H-2/CO = 1. The bulk and surface properties of the catalysts were characterized after reduction and after 40 h time on stream (TOS) without exposing the catalysts to air during the transfer and the measurements. Increased presence of metallic Co after reduction at 350 degrees C was confirmed by X-ray photoelectron spectroscopy indicating metallic Cu to act as a reduction promoter. Catalysts with low Na loadings (50.6 wt%) showed strong initial deactivation presumably due to coking of isolated Co surface sites favoring hydrocarbon formation. The selectivity to higher alcohols gradually increased during the first 10 h TOS indicating enhanced Cu-Co surface alloy formation considered as active sites for HAS. In contrast, with high Na loadings ( wt%) deactivation did not occur and stable performance with constant CO conversion and product distribution was observed indicating significantly altered structural properties. High Na loadings caused the stabilizing amorphous oxide matrix to collapse resulting in strong sintering of the metallic Cu particles, and an increased carbidization of metallic Co forming bulk Co2C was observed by X-ray diffraction. Close contact between metallic Co and Co2C, which is known to facilitate molecular CO adsorption, is assumed to generate additional active sites for HAS. (C) 2016 Elsevier Inc. All rights reserved.