화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.466, 1-11, 2016
Fabrication of Gd/Eu-codoped SmPO4 nanorods for dual-modal magnetic resonance and bio-optical imaging
Ln-based complexes can be used as T-1-enhanced contrast agents of magnetic resonance (MR) imaging in clinical field. Herein, we present a facile and feasible biomineralization process to fabricate Gd/Eu-codoped SmPO4 nanorods (NRs) with silk fibroin (SF) peptides (codoped SF-NRs) as T-1-enhanced contrast agents, which possess paramagnetic property, photoluminescence (PL), better cyto-/tissue-compatibility and longer half-life in blood due to SF coating on their surface. Their bio-distributions in TB-N mice via tail-vein injection indicated that, although SF-NRs could be safely cleared away through renal and fecal excretion, SF-NRs easily permeated and aggregated in tumors. The results of in vitro MR imaging demonstrate that the longitudinal relaxivity r(1) value of codoped SF-NRs (0.31 Sm-Gd mM(-1) s(-1)) is not only significantly higher than those of Gd-doped and Eu-doped SmPO4 SF-NRs, but also higher than those of codoped pure NRs. The tests of in vivo T-1 weighted MR imaging via intro-tumor injection and tail vein injection confirm that, compared to the pure NRs, the codoped SF-NRs exhibited higher positive signal-enhancement ability. Furthermore, the better luminescence imaging of living cells under the fluorescence microscope (94% stronger than that of the NRs without SF). A formation mechanism of codoped SF-NRs is proposed, to explain the synergistic effect of Gd/Eu codoping and SF coating on their enhanced bio-compatibility, half-life in blood, T-1-weighted MR imaging and PL imaging. (C) 2015 Elsevier Inc. All rights reserved.