Journal of Crystal Growth, Vol.440, 6-12, 2016
Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping
We report on metalorganic vapor phase epitaxy (MOVPE) of distributed Bragg reflectors (DBR) applying a periodic modulation of the GaN doping concentration only. The doping modulation changes the refractive index of GaN via the Burstein-Moss-effect. MOVPE growth of highly doped GaN:Ge and modulation of the dopant concentration by at least two orders of magnitude within few nanometers is required to achieve a refractive index contrast of 2-3%. Such modulation characteristic is achieved despite the presence of Ge memory effects and incorporation delay. We realized DBRs with up to 100 layer pairs by combining GaN:Ge with a nominal doping concentration of 1.6 x 10(20) cm(-3) as low refractive index material with unintentionally doped GaN as high-refractive index layer. Scanning transmission electron microscope images reveal DBR structures with abrupt interfaces and homogenous layer thicknesses in lateral and vertical direction. Reflectance measurements of DBRs designed for the blue and near UV-spectral region show a narrow stopband with a maximum reflectivity of 85% at 418 nm and even 95% at 370 nm. InGaN/GaN multi-quantum well structures grown on top of such DBRs exhibit narrow emission spectra with linewidths below 3 nm and significantly increased emission intensity. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Metalorganic vapor phase epitaxy;Doping;Nitrides;Distributed Bragg reflectors;In-situ monitoring;Germanium