Journal of Crystal Growth, Vol.440, 62-68, 2016
Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed III-V nanowires
We present a new theoretical model that treats the group V sensitive growth rates and structures of Au-catalyzed and self-catalyzed III-V nanowires within a single kinetic picture. It is shown that Au-catalyzed III-V nanowires can grow with a time-independent radius within a wide range of parameters. At high V/III flux ratios, the vapor-liquid-solid growth of Au catalyzed III-V nanowires is controlled by surface diffusion of the group III adatoms, while at low Will flux ratios it becomes nucleation-limited. Conversely, self-catalyzed III-V nanowires cannot grow with a time-independent droplet size and instead such nanowires may either swell or shrink or converge to a certain stationary radius depending on the Will flux ratio. Quite importantly, the results are presented in a concise analytical form which is convenient for comparison with experimental data or prior theoretical works. We demonstrate how the model fits the data obtained previously for Au- and Ga-catalyzed GaAs nanowires. (C) 2016 Published by Elsevier B.V.