화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.2, 145-151, April, 2016
판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가
Development and Performance Evaluation of Anti-cavitation Paint with a Lamella Glass-flake
E-mail:
초록
유체의 흐름에 의한 부분적 진공현상인 캐비테이션이 재료 표면에 충격을 주어 철강류 표면이 마모되는 현상에 대응하기 위해 판상형 glass-flake를 적용한 내캐비테이션용 도료를 개발하였다. 특히, 가소성이 좋고 내수성이 뛰어난 특성의 NBR (Acrylonitrile-butadiene rubber) 변성 에폭시 수지에 판상형 glass-flake를 필러로 상용하여 유·무기 복합 세라믹 코팅도료를 개발하였다. 특히 glass-flake는 두께는 100~200 nm 정도로 박막형이며, 길이는 20~30 μm 정도의 판상으로 종횡비가 약 200~300배에 달해 마모 및 내식성에 우수한 성능을 나타낸다. 본 도료로 도막형성 후 접착강도, 인장강도, 연신률, 내캐비테이션 성능을 평가한 결과, 인장강도 4.8~6N/mm2 이상, 파단연신률 30%이상, 마식속도 10 mm2/h이하, 복합사이클 내식성시험에서 모두 우수한 성능을 보였다. 특히 내 캐비테이션 성능 평가에서 기존 선진 외국 제품대비 2배 이상의 우수한 성능을 나타내었다.
In response to the cavitation caused by the partial vacuum caused by the fluid flow, a paint was developed by dispersing the lamella-shaped glass-flake in resin for anti-cavitation. This composite paint was developed by using the inorganic filler (lamella shaped glass-flake) and the NBR (Acrylonitrile-butadiene rubber) which was modified epoxy resin. Especially, the glass-flake was a thin film with a thickness of about 100~200 nm and length of about 20~30 μm, the aspect ratio was about 200 to 300 times that of the plate-shaped. So the paint for anti-cavitation have shown excellent performance in corrosion resistance. The results of evaluating anti-cavitation performance was below, tensile strength 4.8~6 N/mm2 or more, rupture elongation 30% or higher, abrasive speed 10 mm2/h or less. In particular, it showed more than twice the superior performance compared to existing advanced foreign products in anti-cavitation performance evaluation.
  1. Nevarez-Rascon A, Orrantia-Borunda E, Gonzalez-Hernandez J, Flores-Gallardo S, Hurtado-Macias A, Mater. Lett., 63 (2014)
  2. Chow WS, Express Polimer Letters, 104 (2007)
  3. Chou TP, Chandrasdkaran C, Limmer SK, Serji S, Wu Y, Forbess MJ, Nguyen C, Cao GZ, J. Non-Cryst. Solids, 290, 153 (2001)
  4. Lee CM, Oh JK, Rhee SH, SNAK, 47(2), 122 (2010)
  5. Kim KH, Chahine G, “Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, Fluid Mechanics and Its Applications,” Franc JP, Karimi A, e-Book ed., Springer (2014).
  6. Kim SP, Park JJ, Kim YS, Jang YH, Choi YB, Paik BG, SNAK, 43(5), 578 (2006)
  7. Boo KT, Han JM, Song IH, Shin SC, SNAK, 40(4), 30 (2003)
  8. Kelly S, Segal C, AIAA J., 49(11), 2502 (2011)
  9. Bensow RE, Bark G, Lu N, Proceedings of the 8th International Symposium on Cavitation, CAV2012, Singapore, Hydrodynamic Mechanisms in Cavitation Erosion.(2012).
  10. Choi J, Kim S, Korean Ind. Chem. News, 16(5), 28 (2013)
  11. de Lame C, Jean-Marie, Claeys, CoRI, Greenwood P, Lagnemo H, Architectural, 49 (2010)
  12. Paik BG, Kim KY, Kim KS, Kim TS. Kim KR, Jang YH, Lee SU, SNAK, 47(2), 132 (2010)
  13. He Y, Shen Z, “Experimental Research on Cavitation Erosion Detection Based on Acoustic Emission Technique,” 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission University of Granada(2012).
  14. Thenepalli T, Ahn YJ, Han C, Ramakrishna C, Ahn JW, Korean J. Chem. Eng., 32(6), 1009 (2015)
  15. Kim SW, Korean Chem. Eng. Res., 51(3), 382 (2013)
  16. Kalumuck KM, Chahine GL, Frederick GS, Aley PD, 9th American Waterjet Conference Dearborn Michigan, Development of a Cavitation Water Jet Cleaning Tool for Linderwater Marine Fouling Removal, 541-554(1997).
  17. Soyama H, Wear, 297, 895 (2013)
  18. Qin CP, Zheng TG, Wei R, Surf. Coat. Technol., 3530 (2010)
  19. Chang JT, Yeh CH, He JL, Chen KC, Wear, 162 (2003)
  20. Liu T, Sullivan P, Pressure and Temperature Sensitive Paints Experimental Fluid Mechanics, 1st ed., New York: Springer, (2004).