- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.54, No.2, 145-151, April, 2016
판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가
Development and Performance Evaluation of Anti-cavitation Paint with a Lamella Glass-flake
E-mail:
초록
유체의 흐름에 의한 부분적 진공현상인 캐비테이션이 재료 표면에 충격을 주어 철강류 표면이 마모되는 현상에 대응하기 위해 판상형 glass-flake를 적용한 내캐비테이션용 도료를 개발하였다. 특히, 가소성이 좋고 내수성이 뛰어난 특성의 NBR (Acrylonitrile-butadiene rubber) 변성 에폭시 수지에 판상형 glass-flake를 필러로 상용하여 유·무기 복합 세라믹 코팅도료를 개발하였다. 특히 glass-flake는 두께는 100~200 nm 정도로 박막형이며, 길이는 20~30 μm 정도의 판상으로 종횡비가 약 200~300배에 달해 마모 및 내식성에 우수한 성능을 나타낸다. 본 도료로 도막형성 후 접착강도, 인장강도, 연신률, 내캐비테이션 성능을 평가한 결과, 인장강도 4.8~6N/mm2 이상, 파단연신률 30%이상, 마식속도 10 mm2/h이하, 복합사이클 내식성시험에서 모두 우수한 성능을 보였다. 특히 내 캐비테이션 성능 평가에서 기존 선진 외국 제품대비 2배 이상의 우수한 성능을 나타내었다.
In response to the cavitation caused by the partial vacuum caused by the fluid flow, a paint was developed by dispersing the lamella-shaped glass-flake in resin for anti-cavitation. This composite paint was developed by using the inorganic filler (lamella shaped glass-flake) and the NBR (Acrylonitrile-butadiene rubber) which was modified epoxy resin. Especially, the glass-flake was a thin film with a thickness of about 100~200 nm and length of about 20~30 μm, the aspect ratio was about 200 to 300 times that of the plate-shaped. So the paint for anti-cavitation have shown excellent performance in corrosion resistance. The results of evaluating anti-cavitation performance was below, tensile strength 4.8~6 N/mm2 or more, rupture elongation 30% or higher, abrasive speed 10 mm2/h or less. In particular, it showed more than twice the superior performance compared to existing advanced foreign products in anti-cavitation performance evaluation.
- Nevarez-Rascon A, Orrantia-Borunda E, Gonzalez-Hernandez J, Flores-Gallardo S, Hurtado-Macias A, Mater. Lett., 63 (2014)
- Chow WS, Express Polimer Letters, 104 (2007)
- Chou TP, Chandrasdkaran C, Limmer SK, Serji S, Wu Y, Forbess MJ, Nguyen C, Cao GZ, J. Non-Cryst. Solids, 290, 153 (2001)
- Lee CM, Oh JK, Rhee SH, SNAK, 47(2), 122 (2010)
- Kim KH, Chahine G, “Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, Fluid Mechanics and Its Applications,” Franc JP, Karimi A, e-Book ed., Springer (2014).
- Kim SP, Park JJ, Kim YS, Jang YH, Choi YB, Paik BG, SNAK, 43(5), 578 (2006)
- Boo KT, Han JM, Song IH, Shin SC, SNAK, 40(4), 30 (2003)
- Kelly S, Segal C, AIAA J., 49(11), 2502 (2011)
- Bensow RE, Bark G, Lu N, Proceedings of the 8th International Symposium on Cavitation, CAV2012, Singapore, Hydrodynamic Mechanisms in Cavitation Erosion.(2012).
- Choi J, Kim S, Korean Ind. Chem. News, 16(5), 28 (2013)
- de Lame C, Jean-Marie, Claeys, CoRI, Greenwood P, Lagnemo H, Architectural, 49 (2010)
- Paik BG, Kim KY, Kim KS, Kim TS. Kim KR, Jang YH, Lee SU, SNAK, 47(2), 132 (2010)
- He Y, Shen Z, “Experimental Research on Cavitation Erosion Detection Based on Acoustic Emission Technique,” 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission University of Granada(2012).
- Thenepalli T, Ahn YJ, Han C, Ramakrishna C, Ahn JW, Korean J. Chem. Eng., 32(6), 1009 (2015)
- Kim SW, Korean Chem. Eng. Res., 51(3), 382 (2013)
- Kalumuck KM, Chahine GL, Frederick GS, Aley PD, 9th American Waterjet Conference Dearborn Michigan, Development of a Cavitation Water Jet Cleaning Tool for Linderwater Marine Fouling Removal, 541-554(1997).
- Soyama H, Wear, 297, 895 (2013)
- Qin CP, Zheng TG, Wei R, Surf. Coat. Technol., 3530 (2010)
- Chang JT, Yeh CH, He JL, Chen KC, Wear, 162 (2003)
- Liu T, Sullivan P, Pressure and Temperature Sensitive Paints Experimental Fluid Mechanics, 1st ed., New York: Springer, (2004).