화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.36, 367-372, 2015
Deflagration to detonation transition in a vapour cloud explosion in open but congested space: Large scale test
The paper reviews large scale experiments with various fuels in air where successful deflagration to detonation transition (DDT) took place. This includes a recent experiment disclosed in the Buncefield R&D program, where DDT developed in the propane/air mixture. The DDT occurred in branches of deciduous trees in a premixed stagnant mixture. An internal R&D investigation programme was initiated to better understand the phenomena. A large scale experiment in an open space with ethane air mixture is presented in the paper. The premixed mixture was ignited at the edge of the congested three-dimensional rigs which consisted of vertical and horizontal pipes. After ignition, the flame accelerated in the congestion and transitioned to detonation at the end of congestion. Stable detonation propagated through the remaining open and uncongested space. The flame acceleration process leading to DDT is scale dependent. It also depends on many parameters leading to a large investigation array and, significant cost. However, such R&D efforts aimed toward a safer plant design, i.e. the prevention of occurrence of a major accident, are a small fraction of a feal accident cost. (C) 2015 Published by Elsevier Ltd.