화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.294, 177-185, 2015
Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents
The potential of nanoscaled cellulose and enzymatically phosphorylated derivatives as bio-adsorbents to remove metal ions (Ag+, Cu2+ and Fe3+) from model water and industrial effluents is demonstrated. Introduction of phosphate groups onto nanocelluloses significantly improved the metal sorption velocity and sorption capacity. The removal efficiency was considered to be driven by the high surface area of these nanomaterials as well as the nature and density of functional groups on the nanocellulose surface. Generally, in the solutions containing only single types of metal ions, the metal ion selectivity was in the order Ag+ > Cu2+ > Fe3+, while in the case of mixtures of ions, the order changed to Ag+ > Fe3+ > Cu2+, irrespective of the surface functionality of the nanocellulose. In the case of industrial effluent from the mirror making industry, 99% removal of Cu2+ and Fe3+ by phosphorylated nanocellulose was observed. The study showed that phosphorylated nanocelluloses are highly efficient biomaterials for scavenging multiple metal ions, simultaneously, from industrial effluents. (C) 2015 Elsevier B.V. All rights reserved.