화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.298, 328-337, 2015
Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism
o enhance the removal efficiency of 2,2',4,4'-tetrabromodiphenylether (BDE47) in aqueous solutions, novel attapulgite-supported Fe/Ni bimetallic nanoparticles (A-Fe/Ni), which were characterized by a core-shell nanoparticle structure and with an average diameter of 20-40 nm, were synthesized for use in BDE47 degradation. The presence of attapulgite in bimetallic systems could reduce Fe/Ni nanoparticle aggregation and enhance their reactivity. BDE47 was degraded with a significant improvement in removal efficiency of at least 96% by A-Fe/Ni that played a reductive role in the reaction. The degradation kinetics of BDE47 by A-Fe/Ni complied with pseudo-first-order characteristics. To better understand the removal mechanism, detailed analyses were performed for several influential parameters. The improved dosage of A-Fe/Ni was found to be beneficial, and higher values of initial concentration, pH, and methanol/water ratio hindered the degradation rate, which, for example, decreased significantly in mixtures with a methanol proportion higher than 50%. The identification of BDE47 degradation products revealed a stepwise debromination from n-bromo-DE to (n-1)-bromo-DE as a possible pathway, wherein the para-Br was more easily eliminated than ortho-Br. Our findings provide insight into the removal mechanism and evidence for polybrominated diphenyl ether debromination by clay-Fe/Ni bimetallic nanoparticles. (C) 2015 Elsevier B.V. All rights reserved.