Journal of Membrane Science, Vol.478, 85-95, 2015
Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane
This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a Hat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluorethylene and a scrim -backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent Lo the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:Composite membrane;Desalination;Direct contact membrane distillation;Heat and mass transfer