Journal of Physical Chemistry A, Vol.119, No.52, 13048-13054, 2015
Electronically Excited States of Anisotropically Extended Singly-Deprotonated PAH Anions
Polycyclic aromatic hydrocarbons (PAHs) play a significant role in the chemistry of the interstellar medium (ISM) as well as in hydrocarbon combustion. These molecules can have high levels of diversity with the inclusion of heteroatoms and the addition or removal of hydrogens to form charged or radical species. There is an abundance of data on the cationic forms of these molecules, but there have been many fewer studies on the anionic species. The present study focuses on the anionic forms of deprotonated PAHs. It has been shown in previous work that PAHs containing nitrogen heteroatoms (PANHs) have the ability to form valence excited states giving anions electronic absorption features. This work analyzes how the isoelectronic pure PAHs behave under similar structural constructions. Singly deprotonated forms of benzene, naphthalene, anthracene, and tetracene classes are examined. None of the neutral-radicals possess dipole moments large enough to support dipole-bound excited states in their corresponding closed-shell anions. Even though the PANH anion derivatives support valence excited states for three-ringed structures, it is not until four-ringed structures of the pure PAR anion derivatives that valence excited states are exhibited. However, anisotropically extended PAHs larger than tetracene will likely exhibit valence excited states. The relative energies for the anion isomers are very small for all of the systems in this study.