화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.35, 11597-11606, 2015
Silybin and 2,3-Dehydrosilybin Flavonolignans as Free Radical Scavengers
The electronic properties of six derivatives of silybin (characterized by the absence of the 2,3 double bond) and six derivatives of 2,3-dehydrosilybin (characterized by the presence of the 2,3 double bond) have been studied by applying density functional theory to fully understand the free radical scavenger's mechanism for action and the relationship between reactivity and chemical structure. Optimized geometries, Raman spectra, and lambda(max) values are reported, enabling us to characterize the systems. These spectra may be useful for monitoring the oxidation between silybin and 2,3-dehydrosilybin, thus providing important experimental information. The relative abundance of deprotonated species under physiological conditions is also reported. Under physiological conditions (pH 7.4), similar to 70% of silybin is protonated, but 60% of 2,3-dehydrosilybin is deprotonated. The free radical scavenger capacity is analyzed in terms of two mechanisms: electron transfer and adduct formation. Deprotonated molecules are better electron donors and worse electron acceptors than non-deprotonated species. The conclusions derived from this investigation completely concur with previous experimental results. The free radical scavenging activity of 2,3-dehydrosilybin derivatives is higher than that for silybin derivatives. What was not previously considered was the importance of the deprotonated species, which is remarkable and may be important for future experiments.