Journal of Physical Chemistry B, Vol.119, No.42, 13262-13270, 2015
Diffusion of Hydration Water around Intrinsically Disordered Proteins
Hydration water dynamics around globular proteins have attracted considerable attention in the past decades. This work investigates the hydration water dynamics around partially/fully intrinsically disordered proteins and compares it to that of the globular proteins via molecular dynamics simulations. The translational diffusion of the hydration water is examined by evaluating the mean-square displacement and the velocity autocorrelation function, while the rotational diffusion is probed through the dipole dipole time correlation function. The results reveal that the translational and rotational motions of water molecules at the surface of intrinsically disordered proteins/regions are less restricted as compared to those around globular proteins/ordered regions, which is reflected in their higher diffusion coefficient and lower orientational relaxation time. The restricted mobility of hydration water in the vicinity of the protein leads to a sublinear diffusion in a heterogeneous interface. A positive correlation between the mean number of hydrogen bonds and the diffusion coefficient of hydration water implies higher mobility of water molecules at the surface of disordered proteins, which is due to their higher number of hydrogen bonds. Enhanced hydration water mobility around disordered proteins/regions is also related to their higher hydration capacity, low hydrophobicity, and increased internal protein motions. Thus, we generalize that the intrinsically disordered proteins/regions are associated with higher hydration water mobility as compared to globular protein/ordered regions, which may help to elucidate their varied functional specificity.