Journal of Physical Chemistry B, Vol.119, No.50, 15485-15492, 2015
Exploring Dynamics and Cage-Guest Interactions in Clathrate Hydrates Using Solid-State NMR
Interactions between guest molecules and the water cages in clathrates are dominated by isotropic van der Waals forces at low temperatures because the cage structures satisfy the hydrogen bonding propensity of the water. However, above 200 K the water molecules become more labile and may interact strongly with the guests through hydrogen bonding. In this work we compare the dynamics of tetrahydrofuran (THF) and cyclopentane (CP) guests in the hydrate cages above 200 K. Since THF can form hydrogen bonds while CP cannot, the dynamics provide insight into host guest hydrogen bonding. We use magic angle spinning (MAS) solid-state NMR to measure proton spin lattice relaxation times (T-1) of the guests as a function of temperature and find that the activation barrier to the motion of THF molecules is 4.7 kcal/mol (19.7 kJ/mol) at temperatures above 200 K. This is almost 5 times higher than the barrier at lower temperatures. In contrast, the barrier to guest motion in CF hydrate is found to be about 0.67 kcal/mol (2.8 kJ/mol), which agrees well with data at lower temperatures. These results demonstrate that hydrogen bonding interactions between the THF guest and the clathrate cage are significant above 200 K due to the host lattice mobility.