화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.17, 5598-5608, 2015
Gibbs Excess and the Calculation of the Absolute Surface Composition of Liquid Binary Mixtures
Adsorption at the liquid-vapor interphase of a liquid binary mixture is traditionally quantified by means of the Gibbs solute excess. Despite several theoretical reviews on the meaning of Gibbs excess defined by the Gibbs dividing surface, it is still misinterpreted as the excess concentration under Guggenheim's finite-depth surface layer approach. In this work, both concepts are clarified in a practical way, aided by a graphical representation without loss of generality. The understanding of both quantities led to the development of a thermodynamic procedure for the calculation of the actual number of solute and solvent molecules at a finite depth surface layer (not a monolayer), what is called the absolute surface composition. From surface tension and density data, the absolute surface composition of the binary aqueous mixtures of methanol, ethanol, 1-propanol, and 1-butanol was Calculated. Results show thermodynamic consistency and agree with experimental reports and with an empirical mixing rule. The increasing alcohol surface concentration throughout the entire concentration range casts doubt on the formation of an alcohol monolayer, as was suggested by other authors. Furthermore, the use of Guggenheim's monolayer model does not reproduce the experimental data, nor does it show thermodynamic consistency.