화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.54, No.1, 53-63, 2016
Mechanical Recoverability and Damage Process of Ionic-Covalent PAAm-Alginate Hybrid Hydrogels
Hydrogels consisting of interpenetrating networks of ionically and covalently crosslinked polymers showed high toughness and mechanical recoverability as a result of the dissociation and re-formation of ionic crosslinks. The present investigation aimed to provide a quantitative study on the mechanical recoverability and damage process of an example hybrid gel of calcium crosslinked alginate and covalently crosslinked polyacrylamide. Three series of load/unload tests were performed sequentially with the mechanical properties of the gel fully retrieved between the 2nd and 3rd load/unload series while only the partial recovery of mechanical properties was evident from the 1st to 2nd series. The load/unload curves in the three series were modeled by existing mechanical models, and the fitted model parameters clearly demonstrate a damage process for the hybrid gel. When a hybrid gel was deformed above its historic maximum strain, the shortest alginate chains were fully-stretched, pulling apart the weak ionic crosslinks and dissipating fracture energy. Consequently, the strand density of the intact gel network was reduced and the contour length of the remaining next-shortest load-bearing alginate chains became longer. A log-normal distribution was used to describe the probability distribution for the strand fracture and also to describe the strand length distribution of the ionic network. (C) 2015 Wiley Periodicals, Inc.