화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.54, No.2, 331-338, 2016
An In Situ GISAXS Study of Selective Solvent Vapor Annealing in Thin Block Copolymer Films: Symmetry Breaking of In-Plane Sphere Order upon Deswelling
Thin films of asymmetric poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) block copolymers are studied by means of in situ grazing-incidence small-angle X-ray scattering (GISAXS) during solvent vapor annealing in tetrahydrofuran, a solvent selective for the PS majority block of the copolymer. Upon swelling, PS-b-P4VP block copolymers form hexagonal arrays of spherical P4VP microdomains in a PS matrix in films 7-9 layers thick. Deswelling the films induces a transition from hexagonal to face-centered orthorhombic (fco) symmetry, which is stable only at similar to 7 layers of spherical microdomains. Dry films show co-existing hexagonal and orthorhombic symmetries when the solvent is removed slowly, whereas instantaneous solvent removal suppresses the fco structure, resulting in films with only hexagonal structure. The in-plane order of microdomains is significantly deteriorated in dry films independent of the solvent removal rate. Spherical block copolymer microdomains are known to undergo a transition from hexagonal to orthorhombic packing in isothermally annealed thin films when the number of sphere layers is increased from 4 to 5. In this paper, in situ GISAXS experiments reveal that a similar transition occurs during solvent vapor annealing in a selective solvent. Interestingly, the transition from hexagonal to orthorhombic packing of spheres occurs as solvent is removed from a thin block copolymer film. (C) 2015 Wiley Periodicals, Inc.