화학공학소재연구정보센터
Journal of Power Sources, Vol.285, 393-399, 2015
Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction
Active and stable electrocatalysts for the hydrogen evolution reaction (HER) are highly desirable for hydrogen production. Herein, the cuboid-like platinum nanocrystals (Pt-CNSs) are achieved through a facile L-lysine-assisted hydrothermal reduction method. Then, reduced graphene oxide (RGO) supported Pt-CNSs (Pt-CNSs/RGO) nanohybrids are obtained through the self-assemble of Pt-CNSs on graphene oxide (GO) and followed by NaBH4 reduction. The resulting Pt-CNSs/RGO nanohybrids are characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman, showing that the well-defined Pt-CNSs with 5.8 nm length and 3.0 nm width are uniformly and firmly attached on the RGO surface. Electrochemical tests demonstrate that Pt-CNSs/RGO nanohybrids have superior electrocatalytic activity and stability for the HER than pure Pt-CNSs, demonstrating RGO is an excellent cathode support materials for Pt-CNSs. Meanwhile, the present results indicate that the as-prepared Pt-CNSs/RGO nanohybrids have great potential application in HER. (C) 2015 Elsevier B.V. All rights reserved.