화학공학소재연구정보센터
Journal of Power Sources, Vol.283, 1-18, 2015
Design of a comfortable optimal driving strategy for electric vehicles using multi-objective optimization
Due to the limited amount of stored battery energy available for electric vehicles, it is important to use the energy in an optimal manner. This study proposes a novel comfortable optimal driving strategy (CODS) to change a speed that presents a number of optimal acceleration(s) to the driver, along with the total acceleration duration and range corresponding to a desired driving comfort. The design of CODS is done by solving a multi-objective optimization problem (MOOP) of minimizing acceleration duration and battery energy consumption. The acceleration jerk was used as a metric to quantify driving comfort. Based on the realization that the system response time should be low without sacrificing solution optimality for online implementation, two MOOPs were solved: constraining the jerk to a maximum level and minimizing the jerk as an optimization objective. Pareto-optimal fronts were obtained and it was found that consideration of minimizing total jerk is more convenient in finding CODS. A plot of the predicted range, time, and comfort for optimal acceleration(s) to a chosen speed change was presented and a comfortable optimal driving zone was identified. The system response time was found to be around 1 s, indicating its suitability for online implementation. (C) 2015 Elsevier B.V. All rights reserved.