화학공학소재연구정보센터
Journal of Power Sources, Vol.306, 193-199, 2016
Ion and gas chromatography mass spectrometry investigations of organophosphates in lithium ion battery electrolytes by electrochemical aging at elevated cathode potentials
The electrochemical aging of commercial non-aqueous lithium hexafluorophosphate (LiPF6)/organic carbonate solvent based lithium ion battery electrolyte has been investigated in view of the formation of ionic and non-ionic alkylated phosphates. Subject was a solvent mixture of ethylene carbonate/ethyl methyl carbonate EC:EMC (1:1, by wt.) with 1 M LiPF6 (LP50 Selectilyte (TM), BASF). The analysis was carried out by ion chromatography coupled with electrospray ionization mass spectrometry (ESI-MS) for ionic compounds and (headspace) gas chromatography mass spectrometry ((HS)-GC-MS) for non-ionic compounds. The electrochemical aging was performed by galvanostatic charge/discharge cycling and potentiostatic experiments with LiNi0.5Mn1.5O4 (LMNO) as cathode material at increased cut-off potentials (>4.5 V vs. Li/Li+). A strong dependence of the formation of organophosphates on the applied electrode potential was observed and investigated by quantitative analysis of the formed phosphates. In addition, new possible "fingerprint" compounds for describing the electrolyte status were investigated and compared to existing compounds. (C) 2015 Elsevier B.V. All rights reserved.