화학공학소재연구정보센터
Journal of Power Sources, Vol.307, 17-24, 2016
Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties
Two-dimensional (2D) graphene oxide/polypyrrole (GO/PPy) hybrid materials derived from in-situ polymerization are used as precursors for constructing functionalized three-dimensional (3D) porous nitrogen-doped carbon nanosheet frameworks (FT-PNCNFs) through a one-step activation strategy. In the formation process of FT-PNCNFs, PPY is directly converted into hierarchical porous nitrogen-doped carbon layers, while GO is simultaneously reduced to become electrically conductive. The complementary functions of individual components endow the FT-PNCNFs with excellent properties for both supercapacitors (SCs) and sodium ion batteries (SIBs) applications. When tested in symmetrical SC, the FT-PNCNFs demonstrate superior energy storage behaviour. At an extremely high scan rate of 3000 mV s(-1), the cyclic voltammetry (CV) curve retains an inspiring quasi-rectangle shape in KOH solution. Meanwhile, high capacitances (similar to 247 F g(-1) at 10 mV s(-1);-146 F g(-1) at 3000 mV s(-1)) and good cycling stability (similar to 95% retention after 8000 cycles) are achieved. In addition, an attractive SIB anode performance could be achieved. The FT-PNCNFs electrode delivers a reversible capacity of 187 mAh g(-1) during 160th cycle at 100 mA g(-1). Its reversible capacity retains 144 mAh g(-1) after extending the number of cycles to 500 at 500 mA g(-1). (C) 2015 Elsevier B.V. All rights reserved.