화학공학소재연구정보센터
Journal of Process Control, Vol.37, 46-57, 2016
A novel process monitoring and fault detection approach based on statistics locality preserving projections
Data-driven fault detection technique has exhibited its wide applications in industrial process monitoring. However, how to extract the local and non-Gaussian features effectively is still an open problem. In this paper, statistics locality preserving projections (SLPP) is proposed to extract the local and non Gaussian features. Firstly, statistics pattern analysis (SPA) is applied to construct process statistics and grasp the non-Gaussian statistical property using high order statistics. Then, locality preserving projections (LPP) method is used to discover local manifold structure of the statistics. In essence, LPP tries to map the close points in the original space to close in the low-dimensional space. Lastly, T-2 and squared prediction error (SPE) charts of SLPP model are used to detect process faults. One simple simulated system and the Tennessee Eastman process show that the proposed SLPP method is more effective than principal component analysis, LPP and statistics principal component analysis in fault detection performance. (C) 2015 Elsevier Ltd. All rights reserved.