화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.137, No.42, 13603-13611, 2015
New High- and Low-Temperature Phase Changes of ZIF-7: Elucidation and Prediction of the Thermodynamics of Transitions
We have found that the 3D zeolitic imidazolate framework ZIF-7 exhibits far more complex behavior in response to the adsorption of guest molecules and changes in temperature than previously thought. We believe that this arises from the existence of different polymorphs and different types of adsorption sites. We report that ZIF-7 undergoes a displacive, nondestructive phase change upon heating to above similar to 700 degrees C in vacuum, or to similar to 500 degrees C in CO2 or N-2. This is the first example of a temperature-driven phase change in 3D ZIF frameworks. We predicted the occurrence of the high-temperature transition on the basis of thermodynamic arguments and analyses of the solid free-energy differences obtained from CO2 and n-butane adsorption isotherms. In addition, we found that ZIF-7 exhibits complex behavior in response to the adsorption of CO2 manifesting in double transitions on adsorption isotherms and a doubling of the adsorption capacity. We report adsorption microcalorimetry, molecular simulations, and detailed XRD investigations of the changes in the crystal structure of ZIF-7. Our results highlight mechanistic details of the phase transitions in ZIF-7 that are driven by adsorption of guest molecules at low temperature and by entropic effects at high temperature. We derived a phase diagram of CO2 in ZIF-7, which exhibits surprisingly complex re-entrant behavior and agrees with our CO2 adsorption measurements over a wide range of temperatures and pressures. We predicted phase diagrams of CH4, C3H6, and C4H10. Finally, we modeled the temperature-induced transition in ZIF-7 using molecular dynamics simulations in the isobaric-isothermal ensemble, confirming our thermodynamic arguments.