Journal of the American Chemical Society, Vol.137, No.50, 15640-15643, 2015
Catenation through a Combination of Radical Templation and Ring-Closing Metathesis
Synthesis of an electrochemically addressable [2] catenane has been achieved following formation by templation of a [2]pseudorotaxane employing radically enhanced molecular recognition between the bisradical dication obtained on reduction of the tetracationic cydophane, cyclobis(paraquat-p-phenylene), and the radical cation generated on reduction of a viologen disubstituted with p-xylylene units, both carrying tetraethylene glycol chains terminated by allyl groups. This inclusion complex was subjected to olefin ring-dosing metathesis, which was observed to proceed under reduced conditions, to mechanically interlock the two components. Upon oxidation, Coulombic repulsion between the positively charged and mechanically interlocked components results in the adoption of a co-conformation where the newly formed alkene resides inside the cavity of the tetracationic cydophane. H-1 NMR spectroscopic analysis of this hexacationic [2] catenane shows a dramatic upfield shift of the resonances associated with the olefinic andallylic protons as a result of them residing inside the tetracationic component. Further analysis shows high diastereoselectivity during catenation, as only a single (Z)-isomer is formed.