Journal of the American Chemical Society, Vol.137, No.29, 9202-9205, 2015
Enabling New Modes of Reactivity via Constrictive Binding in a Supramolecular-Assembly-Catalyzed Aza-Prins Cyclization
Supramolecular assembly 1 catalyzes a bimolecular aza-Prins cyclization featuring an unexpected transannular 1,5-hydride transfer. This reaction pathway, which is promoted by constrictive binding within the supramolecular cavity of 1, is kinetically disfavored in the absence of 1, as evidenced by the orthogonal reactivity observed in bulk solution. Mechanistic investigation through kinetic analysis and isotopic labeling studies indicates that the rate-limiting step of the transformation is the encapsulation of a transient iminium ion and supports the proposed 1,5-hydride transfer mechanism. This represents a rare example of such an extreme divergence of product selectivity observed within a catalytic metal-ligand supramolecular enzyme mimic.