화학공학소재연구정보센터
Langmuir, Vol.31, No.44, 12019-12024, 2015
Self-Assembly of Charged Nanoparticles by an Autocatalytic Reaction Front
In this work we present that aggregation of charged and pH sensitive nanoparticles can be spatiotemporally controlled by an autonomous way using the chlorite-tetrathionate autocatalytic front, where the front regulates the electrostatic interaction between nanoparticles due to protonation of the capping (carboxylate-terminated) ligand. We found that the aggregation and sedimentation of nanoparticles in liquid phase with the effect of reversible binding of the autocatalyst (H+) play important roles in changing the front stability (mixing length) and the velocity of the front in both cases when the fronts propagate upward and downward. Calculation of interparticle interactions (electrostatic and van der Waals) with the measurement of front velocity revealed that the aggregation process occurs fast (within a few seconds) at the front position.