화학공학소재연구정보센터
Langmuir, Vol.31, No.22, 6045-6054, 2015
Adsorbed Mass of Polymers on Self-Assembled Mono layers: Effect of Surface Chemistry and Polymer Charge
The adsorbed mass of polymers on surfaces with different chemistry is presented, and the related adsorption mechanism is discussed. Strong and weak polyelectrolytes of negative and positive charge are studied, as well as an uncharged polymer. Self-assembled monolayers of alkanethiols on gold are used in reflectometry and quartz crystal microbalance (QCM-D) experiments as adsorbing substrates bearing different terminal moieties, namely, methyl, hydroxyl, carboxyl, and amine groups. The various polymer-surface combinations allow the systematic investigation of the role of surface chemistry and polymer charge on adsorbed amount. Interactions of different nature and range drive polymer adsorption: the measured adsorbed amounts reveal information about their relative contribution. When electrostatic chain-surface attraction is present, the largest adsorbed masses are observed. However, significant mass is measured even when an electrostatic barrier to adsorption is present, suggesting the importance of forces of nonelectrostatic origin, which include both hydrophobic interactions and specific forces acting at short distances. This mechanism results in large adsorbed amounts for the adsorption of weak polyelectrolytes, and it is apparent especially in the adsorption behavior of a neutral polymer.