화학공학소재연구정보센터
Macromolecular Rapid Communications, Vol.36, No.23, 2065-2069, 2015
Aromatic Heterocycle 1,3,4-Oxadiazole-Substituted Thieno[3,4-b]thiophene to Build Low-Bandgap Polymer for Photovoltaic Application
Electron-deficient heterocycle 1,3,4-oxadiazole is first introduced to the 2-position of thieno[3,4-b]thiophene (TT) to construct a new building block 2-(thieno[3,4-b]thiophen-2-yl)-5-(alkylthio)-1,3,4-oxadiazole (TTSO) with alkylthio chain. The polymer PBDT-TTSO based on TTSO and benzodithiophene (BDT) exhibits a deep lying highest occupied molecular orbital (HOMO) energy level of -5.32 eV and low-bandgap of 1.62 eV. The power conversion efficiency (PCE) of 5.86% is obtained with a relatively high V-OC of 0.74 V, a J(SC) of 13.1 mA cm(-2), and FF of 60.5%. Furthermore, as S atom in thioether can be oxidized easily, the optoelectronic properties of PBDT-TTSO treated with different oxidants are preliminary investigated. Interestingly, the oxidation products still maintain high PCE with reduction less than 30%. This work demonstrates a new method to regulate HOMO energy levels by introducing electron-deficient aromatic heterocyclic moiety.