화학공학소재연구정보센터
Minerals Engineering, Vol.70, 43-54, 2015
Mineral carbon storage in pre-treated ultramafic ores
Mineral carbon sequestration (MCS) is a type of carbon storage based on natural rock weathering processes where CO2, dissolved in rainwater, reacts with alkaline minerals to form solid carbonates. Although MCS has advantages over other carbon storage techniques, an economic MCS process has not yet been developed. Two approaches were taken in this work to attempt to reduce the cost of MCS. The first approach was to use a waste material, serpentine waste from ultramafic nickel ore processing, as a feedstock. The second approach was to develop pre-treatments to increase the carbon storage capacity of the feedstock. Two pre-treatments were investigated in this work, including microwave pre-treatment and leaching with ligands at neutral to alkaline pH. The carbon uptake of ultramafic ores was found to increase with increasing microwave pre-treatment after a threshold heating time of 4 min was surpassed. A maximum carbon uptake of 18.3 g CO2/100 g ore (corresponding to a carbonate conversion of 36.6%) was observed for microwave pre-treated ore. The increase in carbon uptake was attributed primarily to the conversion of serpentine to olivine in ultramafic ores that occurs as result of microwave pretreatment. The effect of five different ligands (catechol, citrate, EDTA, oxalate and tiron) on the carbon uptake of ultramafic ores was investigated. Of the ligands tested, only catechol and tiron were found to both improve the leaching of magnesium from the ores and the quantity of CO2 stored. A maximum carbon uptake of 9.7 g/100 g ore (corresponding to a carbonate conversion of 19.3%) was observed for ultramafic ore pre-leached and carbonated in tiron solution at pH 10. This is the first time ligands have been reported to improve the carbon uptake of mineral carbon sequestration feedstock. Although process optimization work was not conducted, both microwave pre-treatment and leaching with ligands at neutral to alkaline pH show promise as ways to lower the cost of MCS. (C) 2014 Elsevier Ltd. All rights reserved.