- Previous Article
- Next Article
- Table of Contents
Minerals Engineering, Vol.76, 154-167, 2015
The effect of particle size on acid mine drainage generation: Kinetic column tests
The rate of acid mine drainage (AMD) generation is directly proportional to the surface area and so to the particle size distribution of acid-forming minerals exposed to oxidation. Materials in various particle sizes are subject to weathering processes at field condition; however, the particle size dependent oxidation rate has not been investigated for understanding entire geochemical behavior at a mining site. Therefore, a comprehensive research program was aimed to investigate the effect of particle size on pH variation and acid mine drainage generation using kinetic column tests, and then to find convenient methodologies for upscaling laboratory-based results to the field condition. For this purpose, ore samples collected from Murgul Damar open-pit mining were grinded in three different particle size distributions that are coarse (minus 22.5 mm), medium (minus 3.35 mm) and fine (minus 0.625 mm) sizes, 34 columns were designed in different dimensions for kinetic column tests. It was found that the cumulative concentration of the many constituents measured from medium particles (minus 3.35 mm) are higher than coarser samples due to decreasing specific surface area with increasing particle size. Similarly, because of decreasing of hydraulic conductivity with increasing the fine content, the cumulative concentration of constituents measured from medium particles (minus 3.35 mm) are also higher than finer particles (minus 0.625 mm). Based on statistical and analytical analyses of the results of kinetic column tests, the time required to initiate acid formation at field condition varied between 489 and 1002 days depending on particle size distribution. In addition, considering the effect of particle size and the results of related statistical analysis, main oxidation (SO42-) and neutralization (Ca2+, Mg2+, Mn2+ etc.) products were also successfully upscaled to the field condition. (C) 2014 Elsevier Ltd. All rights reserved.