Minerals Engineering, Vol.82, 25-35, 2015
Analysis of mineral grades for geometallurgy: Combined element-to-mineral conversion and quantitative X-ray diffraction
Knowledge of the grade of valuable elements and its variation is not sufficient for geometallurgy. Minerals define not only the value of the deposit, but also the method of extraction and concentration. A number of methods for obtaining mineral grades were evaluated with a focus on geometallurgical applicability, precision and trueness. For a geometallurgical program, the number of samples to be analyzed is large, therefore a method for obtaining mineral grades needs to be cost-efficient, relatively fast, and reliable. Automated mineralogy based on scanning electron microscopy is generally regarded as the most reliable method for analyzing mineral grades. However, the method is time demanding and expensive. Quantitative X-ray diffraction has a relatively high detection limit, 0.5%, while the method is not suitable for some base and precious metal ores, it still provides significant details on gangue mineral grades. The application of the element-to-mineral conversion has been limited to the simple mineralogy because the number of elements analyzed limits the number of calculable mineral grades. This study investigates a new method for the estimation of mineral grades applicable for geometallurgy by combining both the element-to-mineral conversion method and quantitative X-ray diffraction with Rietveld refinement. The proposed method not only delivers the required turnover for geometallurgy, but also overcomes the shortcomings if quantitative X-ray diffraction or element-to-mineral is used alone. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Geometallurgy;Bulk mineralogy;Element-to-mineral conversion;Combined XRD and element-to-mineral;Precision and trueness