화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.36, No.1, 329-340, 2016
Application of Plasma Fuel Reformer to an On-Board Diesel Burner
A conventional diesel burner has arisen several shortcomings, such a large supply of air for a stoichiometric combustion, and a long heat-up time to reach the light-off temperature of catalyst in a diesel after-treatment system. This study shows a promising potential of using a plasma reformer for staged diesel combustion with minimized air and fuel consumption, and increased the flame stability with low NOx emission. A working principle of a plasma fuel reformer for staged combustion is explained in detail by both visualizing the plasma-assisted flame and analyzing the gas products. The concentrations of H-2, CO, NOx and the unburned total hydrocarbons were measured by gas chromatography and a commercial gas analyzer. Considering the operating condition of diesel exhaust gas is too harsh to maintain a stable diesel flame with a conventional diesel burner, plasma fuel reformer has distinctive advantages in stable flame anchoring under the condition of low oxygen concentration and fast flow speed. The re-ignition and stable flame anchoring by entrapment of oxygen in exhaust gas is mainly attributed to the low ignition energy and high diffusion velocity of hydrogen molecule. From an economic point of view, plasma reformer is also the only technology which can use only 1/3-1/8 of the air required for the stoichiometric burning of a conventional diesel burner. A conventional burner was simulated and analyzed to consume up to 30 % more fuel compared to the plasma reformer with the staged combustion to get the same level of temperature elevation in a real diesel engine scale.