Renewable Energy, Vol.87, 903-910, 2016
A multiobjective framework for wind speed prediction interval forecasts
Wind energy is rapidly emerging as a potential and viable replacement for fossil fuels owing to its clean way of power production. However, integration of this abundantly available renewable energy into the power system is constrained by its intermittent nature and unpredictability. Efforts to improve the prediction accuracy of wind speed is therefore imperative for its successful integration into the grid. The uncertainty associated with the prediction is also an important information needed by the system operators for reliable and economic operations. This paper presents the implementation of a multi-objective differential evolution (MODE) algorithm for generation of prediction intervals (PIs) for capturing the uncertainty related to forecasts. Support vector machine (SVM) is used as the machine learning technique and its parameters are tuned such that multiple contradictory objectives are satisfied to generate Pareto-optimal solutions. Several case studies are performed for data from wind farms located in the eastern region of United States. The obtained results prove the successful implementation of the methodology and generation of high quality Pis. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Differential evolution;Renewable energy;Multi-objective;Prediction interval;Support vector machines;Wind speed