화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.54, No.1, 1-29, 2016
OPTIMAL CONTROL OF UNCERTAIN SYSTEMS USING SAMPLE AVERAGE APPROXIMATIONS
In this paper, we introduce the uncertain optimal control problem of determining a control that minimizes the expectation of an objective functional for a system with parameter uncertainty in both dynamics and objective. We present a computational framework for the numerical solution of this problem, wherein an independently drawn random sample is taken from the space of uncertain parameters, and the expectation in the objective functional is approximated by a sample average. The result is a sequence of approximating standard optimal control problems that can be solved using existing techniques. To analyze the performance of this computational framework, we develop necessary conditions for both the original and approximate problems and show that the approximation based on sample averages is consistent in the sense of Polak [Optimization: Algorithms and Consistent Approximations, Springer, New York, 1997]. This property guarantees that accumulation points of a sequence of global minimizers (stationary points) of the approximate problem are global minimizers (stationary points) of the original problem. We show that the uncertain optimal control problem can further be approximated in a consistent manner by a sequence of nonlinear programs under mild regularity assumptions. In numerical examples, we demonstrate that the framework enables the solution of optimal search and optimal ensemble control problems.