화학공학소재연구정보센터
Solar Energy, Vol.120, 104-112, 2015
Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
The thermal performance of flat-plate solar collectors with riser and header arrangements is strongly influenced by the flow distribution through the absorber tubes. A more uniform flow distribution leads to a homogenous temperature distribution which gives higher collector efficiency. The Z distribution usually has better performance when compared to Pi distribution. The design of the manifold influences the observed flow distribution. To optimize the manifold design, a correlation model was developed, based on correlations for minor pressure losses. Furthermore, the flow in this optimized geometry was simulated in 3D using the computational fluid dynamics (CFD) software code in order to confirm the results of the correlation based model. A new experimental low-intrusive technique was used to measure the flow distribution in an existing solar collector, validating the simulation results. The flow inside the absorber tubes is laminar; the major pressure loss inside riser tubes was measured using a high accuracy differential pressure transmitter, which then permits the indirect estimation of the mean velocity inside the tubes. It was the first time that this experimental methodology has been applied to analyse the flow distribution in solar collectors. The influence of the total water flow rate was analysed. For a good flow distribution it was concluded that the outlet header manifold should have a higher diameter compared to the inlet header diameter. Usually commercialised solar collectors have the headers with same diameter. (C) 2015 Elsevier Ltd. All rights reserved.