Transport in Porous Media, Vol.109, No.3, 541-570, 2015
Dispersion in Porous Media with Heterogeneous Nonlinear Reactions
The upscaling of mass transport in porous media with a heterogeneous reaction at the fluid-solid interface, typical of dissolution problems, is carried out with the method of volume averaging, starting from a pore-scale transport problem involving thermodynamic equilibrium or nonlinear reactive boundary conditions. A general expression to describe the macro-scale mass transport is obtained involving several effective parameters which are given by specific closure problems. For representative unit cell with a simple stratified geometry, the effective parameters are obtained analytically and numerically, while for those with complicated geometries, the effective parameters are only obtained numerically by solving the corresponding closure problems. The impact on the effective parameters of the fluid properties, in terms of pore-scale P,clet number Pe, and the process chemical properties, in terms of pore-scale Damkohler number Da and reaction order (n), is studied for periodic stratified and 3D unit cells. It is found that the tortuosity effects play an important role on the longitudinal dispersion coefficient in the 3D case, while it is negligible for the stratified geometry. When Da is very small, the effective reaction rate coefficient is nearly identical to the pore-scale one, while when Da is very large, the reactive condition turns out to be equivalent to pore-scale thermodynamic equilibrium, and the macro-scale mass exchange term is consequently given in a different form from the reactive case. An example of the application of the macro-scale model is presented with the emphasis on the potential impact of additional, non-traditional effective parameters appearing in the theoretical development on the improvement of the accuracy of the macro-scale model.
Keywords:Upscaling;Volume averaging;Closure problem;Effective dispersion tensor;Effective reaction rate