Molecular Crystals and Liquid Crystals, Vol.434, 587-598, 2005
Lyotropic chromonic liquid crystals for biological sensing applications
We describe director distortions in the nematic liquid crystal (LC) caused by a spherical particle with tangential surface orientation of the director and show that light transmittance through the distorted region is a steep function of the particle's size. The effect allows us to propose a real-time microbial sensor based on a lyotropic chromonic LC (LCLC) that detects and amplifies the presence of immune complexes. A cassette is filled with LCLC, antibody, and antigen-bearing particles. Small and isolated particles cause no macroscopic distortions of the uniformly aligned LCLC. Upon antibody-antigen binding, the growing immune complexes.