- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.26, No.1, 54-60, January, 2016
Lithium disilicate 유리의 입자크기에 따른 결정화 기구
Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes
E-mail:
We have investigated the crystallization mechanism of the lithium disilicate (Li2O-2SiO2, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under 45 μm, 75~106 μm, and 125~150 μm, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.
- Kawamoto T, Abe S, Phys. Rev. B, 68, 235112 (2003)
- Sarre G, Blanchard P, Broussely M, J. Power Sources, 127(1-2), 65 (2004)
- Fuss T, Ray CS, Kitamura N, Makihara M, Day DE, J. Non-Cryst. Solids, 318, 157 (2003)
- Yoon HW, Song CH, Yang YS, Yoon SJ, Korean J. Mater. Res., 22(2), 61 (2012)
- Hautojarvi P, Vehanen A, Komppa V, Pajanne E, J. Non-Cryst. Solids, 29, 365 (1978)
- Fernandes HR, Tulyaganov DU, Goel IK, Ferreira MF, J. Am. Ceram. Soc., 91, 11 (2008)
- Furusawa SI, Kasahara T, Kamiyama A, Solid State Ion., 180(6-8), 649 (2009)
- Du J, Corrales LR, J. Chem. Phys., 125, 114702 (2006)
- Gutzow I, Durschang B, Russel C, J. Mater. Sci., 32(20), 5389 (1997)
- Buchner S, Soares P, Pereira AS, Ferreira EB, Balzaretti NM, J. Non-Cryst. Solids, 356, 3004 (2010)
- Mizouchi N, Cooper A, J. Am. Ceram. Soc., 56, 320 (1973)
- Xu XJ, Ray CS, Day DE, J. Am. Ceram. Soc., 74, 909 (1991)
- Fuss T, Ray CS, Kitamura N, Makihara M, Day DE, J. Non-Cryst. Solids, 318, 157 (2003)
- Avrami M, J. Chem. Phys., 9, 177 (1941)
- Kissinger HE, J. Res. Nat. Bur. Stand., 57, 217 (1956)
- Henderson DW, J. Non-Cryst. Solids, 30, 301 (1979)
- Matusita K, Komatsu T, Yokota R, J. Mater. Sci., 19, 291 (1984)
- Choi HW, Kim YH, Rim YH, Yang YS, Phys. Chem. Chem. Phys., 15, 9940 (2013)
- Christian JW, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).
- Kim SJ, Kim JE, Rim YH, Yang YS, Solid State Commun., 131, 129 (2004)
- Choi HW, Yang YS, J. Therm. Anal. Calorim., 119, 2171 (2015)
- Kim SJ, Kim JE, Choi HW, Rim YH, Yang YS, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113, 149 (2004)
- Choi HW, Rim YH, Yang YS, J. Korean Phys. Soc., 63, 2376 (2013)