화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.3, 123-129, March, 2016
Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator
E-mail:
The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of TiO2 and Al2O3 or aggregates of primary particles of Cu2O. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for Cu2O to 46.1 nm for Al2O3.
  1. Kruis FE, Fissan H, Peled A, J. Aerosol Sci., 29(5), 511 (1998)
  2. Liu D, Cao G, Energy Environ. Sci., 3, 1218 (2010)
  3. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
  4. Wang F, Tan WB, Zhang Y, Fan X, Wang M, Nanotechnology, 17, R1 (2006)
  5. Murthy SK, Int. J. Nanomedicine, 2, 129 (2007)
  6. Kamyshny A, Magdassi S, Small, 10, 3515 (2014)
  7. Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C, Adv. Mater., 23(5), 599 (2011)
  8. Kotov YA, Nanotechnol. Russ., 4, 415 (2009)
  9. Madler L, Kammler HK, Mueller R, Pratsinis SE, J. Aerosol Sci., 33(2), 369 (2002)
  10. Vollath D, J. Nanopart. Res., 10, 39 (2008)
  11. Osipov VV, Kotov YA, Ivanov MG, Samatov OM, Lisenkov VV, Platonov VV, Murzakaev AM, Medvedev AI, Azarkevich EI, Laser Phys., 16, 116 (2006)
  12. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A, J. Nanopart. Res., 11, 315 (2009)
  13. Ku BK, Maynard AD, J. Aerosol Sci., 37(4), 452 (2006)
  14. http://www.buonapart-e.eu/
  15. Pfeiffer TV, Feng J, Schmidt-Ott A, Adv. Powder Technol., 25(1), 56 (2014)
  16. Meuller BO, Messing ME, Engberg DLJ, Jansson AM, Johansson LIM, Norlen SM, Tureson N, Deppert K, Aerosol Sci. Technol., 46, 1256 (2012)
  17. Byeon JH, Park JH, Hwang JH, J. Aerosol Sci., 39(10), 888 (2008)
  18. Kim JT, Chang JS, J. Electrost., 63, 911 (2005)
  19. Vons VA, de Smet LCPM, Munao D, Evirgen A, Kelder EM, Schmidt-Ott A, J. Nanopart. Res., 13, 4867 (2011)
  20. Horvath H, Gangl M, J. Aerosol Sci., 34(11), 1581 (2003)
  21. Pai DZ, Ostrikov K, Kumar S, Lacoste DA, Levchenko I, Laux CO, Sci. Reports, 3, 1221 (2013)
  22. Hontanon E, Palomares JM, Stein M, Guo X, Engeln R, Nirschl H, Kruis FE, J. Nanopart. Res., 15, 1957 (2013)
  23. Efimov AA, Ivanov VV, Bagazeev AV, Beketov IV, Volkov IA, Shcherbinin SV, Tech. Phys. Lett., 39, 1053 (2013)
  24. Mesyats GA, Pulsed power, Springer Science & Business Media, New York, USA(2007).
  25. Windeler RS, Friedlander SK, Lehtinen KEJ, Aerosol Sci. Technol., 27, 174 (1997)
  26. Windeler RS, Lehtinen KEJ, Friedlander SK, Aerosol Sci. Technol., 27, 191 (1997)
  27. Hanaor DAH, Sorrell CC, J. Mater. Sci., 46(4), 855 (2011)
  28. Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305 (1998)
  29. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496 (2000)
  30. Zhang H, Ren X, Cui ZL, J. Cryst. Growth, 304(1), 206 (2007)
  31. Ivanov VV, Paranin SN, Khrustov VR, Phys. Met. Met., 94, S98 (2002)
  32. Zhigalina VG, Lizunova AA, Sulyanov SN, Ivanov VV, Kiselev NA, Nanotechnol. Russ., 9, 492 (2014)
  33. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M, Sci. Reports, 4, 4043 (2014)
  34. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD, NPG Asia Mater., 3, 17 (2011)
  35. Kim T, Kang H, Jeong S, Kang DJ, Lee C, Lee CH, Seo MK, Lee JY, Kim BJ, ACS Appl. Mater. Interfaces, 6, 16956 (2014)
  36. Mueller R, Kammler HK, Pratsinis SE, Vital A, Beaucage G, Burtscher P, Powder Technol., 140(1-2), 40 (2004)
  37. Kammler HK, Madler L, Pratsinis SE, Chem. Eng. Technol., 24(6), 583 (2001)
  38. Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H, J. Nanopart. Res., 15, 1559 (2013)
  39. Bau S, Witschger O, Gensdarmes F, Thomas D, J. Nanopart. Res., 14, 1217 (2012)
  40. Ryan HM, High Voltage Engineering and Testing, 2nd ed., The Institution of Electrical Engineers, London, England (2001).
  41. ISO 14887:2000 (E). Sample Preparation - Dispersing Procedures for Powders in Liquids.
  42. Hinds WC, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed., Wiley-Interscience, New York, USA (1999).
  43. Lide DR, CRC handbook of chemistry and physics : a ready reference book of chemical and physical data, 86th ed., CRC Press, Boca Raton, USA (2005).
  44. Ullmann M, Friedlander SK, Schmidt-Ott A, J. Nanopart. Res., 4, 499 (2002)
  45. Friedlander SK, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, New York, USA (2000).
  46. Lehtinen KEJ, Zachariah MR, J. Aerosol Sci., 33(2), 357 (2002)
  47. Itina TE, Voloshko A, Appl. Phys. B-Lasers Opt., 113, 473 (2013)
  48. Jones FL, J. Appl. Phys., 1, 60 (1950)
  49. Szente RN, Munz RJ, Drouet MG, J. Phys. D-Appl. Phys., 27, 1443 (1994)
  50. Naidu MS, Kamaraju V, High Voltage Engineering, 3rd ed., Tata McGraw-Hill Education, New Delhi, India (2004).
  51. Llewellyn-Jones F, D.Phil MA, Sc D, Inst F, Platinum Metals Rev., 7, 58 (1963)
  52. Zhu W, Pratsinis SE, ACS Symp. Ser., 662, 64 (2009)
  53. Oh HC, Ji JH, Jung JH, Kim SS, Mater. Sci. Forum, 544-545, 143 (2007)
  54. Byeon JH, Kim YW, ACS Appl. Mater. Interfaces, 6, 763 (2014)
  55. Jing X, Park JH, Peters TM, Thorne PS, Toxicol. In Vitro, 29, 502 (2015)
  56. Ghaemi S, Schmidt-Ott A, Scarano F, Meas. Sci. Technol., 21, 105403 (2010)