화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.2, 153-157, April, 2016
금속 함유 이온성 액체 촉매상에서의 프로필렌 카보네이트의 합성
Synthesis of Propylene Carbonate over Metal containing Ionic Liquid Catalysts
E-mail:
초록
본 연구에서는 세 가지 형태의 금속을 함유한 이온성 액체 촉매를 제조하고, 다양한 물리화학적 분석법으로 제조된 촉매의 특성분석을 실시하였다. 프로필렌 옥사이드(PO)와 이산화탄소의 부가반응을 통한 프로필렌 카보네이트(PC)의 합성반응에서 세 가지 촉매의 반응활성을 확인하였고 속도론적 연구를 통해 촉매들의 반응성 차이를 비교하였다. 세가지 금속이 다른 촉매에 대한 유사 반응속도 상수(Kapp)는 (MeIm)2ZnCl2, > (MeIm)2FeCl2 > (MeIm)2CuCl2의 순서이며, 이 것은 세 가지 촉매의 반응성이 (MeIm)2ZnCl2 > (MeIm)2FeCl2 > (MeIm)2CuCl2의 순서로 실험결과와 잘 일치하였다.
In this study, three different metal-containing ionic liquid catalysts were prepared by metal insertion and characterized by various physicochemical analytic methods. The catalytic performance of the metal containing ionic liquids in the cycloaddition of CO2 with propylene oxide (PO) to produce propylene carbonate (PC) was investigated under the solvent free condition. The order of approximate rate constants (Kapp) for the metal containing ionic liquid catalysts was (MeIm)2ZnCl2, > (MeIm)2FeCl2 > (MeIm)2CuCl2. These results are in accord with the experimentally obtained activity order of the different metal containing ionic liquid catalysts.
  1. Romano U, Chim. Ind., 75, 303 (1993)
  2. Shaikh AA, Sivaram S, Chem. Rev., 96(3), 951 (1996)
  3. Weissermel K, Arpe HJ, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).
  4. Kihara N, Hara N, Endo T, J. Org. Chem., 58(23), 6198 (1993)
  5. Yano T, Matsui H, Koike T, Ishiguro H, Rujihara H, Yoshihara M, Maeshima T, Chem. Commun., 12, 1129 (1997)
  6. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K, J. Am. Chem. Soc., 121(18), 4526 (1999)
  7. Paddock RL, Nguyen ST, J. Am. Chem. Soc., 123(46), 11498 (2001)
  8. Shen YM, Duan WL, Shi M, J. Org. Chem., 68(4), 1559 (2003)
  9. Kim HS, Kim JJ, Lee BG, Jung OS, Jang HG, Kang SO, Angew. Chem.-Int. Edit., 39(22), 4096 (2000)
  10. Li FW, Xia CG, Xu LW, Sun W, Chen GX, Chem. Commun., 16, 2042 (2003)
  11. Aida T, Inoue S, J. Am. Chem. Soc., 105(5), 1304 (1983)
  12. Sheldon R, Chem. Commun., 23, 2399 (2001)
  13. Zhao DB, Wu M, Kou Y, Min E, Catal. Today, 74(1-2), 157 (2002)
  14. Wasserscheid P, Keim W, Angew. Chem.-Int. Edit., 39(21), 3772 (2000)
  15. Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667 (2002)
  16. Marsh KN, Deev A, Wu ACT, Tran E, Klamt A, Korean J. Chem. Eng., 19(3), 357 (2002)
  17. Song CE, Shim WH, Roh EJ, Choi JH, Chem. Commun., 17, 1695 (2000)
  18. Kim DW, Park DW, J. Nanosci. Nanotechnol., 14(6), 4632 (2014)
  19. Chowdhury A, Thynell ST, Thermochim. Acta, 443(2), 159 (2006)
  20. Roshan R, Hwang YS, Roshan R, Ahn SH, Kathalikkattil AC, Park DW, Catal. Sci. Technol., 2, 1674 (2012)
  21. Kathalikkattil AC, Tharun J, Roshan R, Soek HG, Park DW, Appl. Catal. A: Gen., 447, 107 (2012)
  22. Vallapa N, Wiarachai O, Thongchul N, Pan J, Tangpasuthadol V, Kiatkamjornwong S, Hoven VP, Carbohydr. Polym., 83, 868 (2011)
  23. Niedermaier I, Kolbeck C, Taccardi N, Schulz PS, Li J, Drewello T, Wasserscheid P, Steinruck HP, Maier F, Chem. Phys. Chem., 13, 1725 (2012)
  24. Park DW, Yu BS, Jeong ES, Kim I, Kim MI, Oh KJ, Park SW, Catal. Today, 98(4), 499 (2004)