화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.2, 199-204, April, 2016
입상 활성탄에 의한 Rhodamin-B의 흡착 열역학, 동력학 및 등량 흡착열에 관한 연구
Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Rhodamin-B onto Granular Activated Carbon
E-mail:
초록
입상 활성탄을 사용하여 수용액으로부터 Rhodamine-B 염료의 흡착에 대해 조사하였다. 회분식 실험은 흡착제의 양, pH 초기농도와 접촉시간과 온도를 흡착변수로 사용하여 수행하였다. 흡착평형자료는 Langmuir 등온식에 잘 맞았다. 평가된 Langmuir 분리계수(RL = 0.0164~0.0314)로부터 이 흡착공정이 적절한 처리방법이 될 수 있음을 알았다. 흡착속도실험결과는 유사 1차 반응속도식에 잘 맞는 것으로 나타났다. 음수값의 Gibbs 자유에너지(-4.51~-13.44 kJ/mol)와 양수값의 엔탈피(128.97 kJ/mol)는 흡착이 자발적이고 흡열공정으로 진행된다는 것을 나타냈다. 등량흡착열은 흡착된 염료분자들의 측면상호작용에 따라 표면부하량이 증가할수록 커졌다.
The adsorption of Rhodamine-B dye using granular activated carbon from aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, pH initial concentration, contact time and temperature. The equilibrium adsorption data showed a good fit to Langmuir isotherm model. Based on the estimated Langmuir separation factor (RL = 0.0164~0.0314), our adsorption process could be employed as an effective treatment method. The kinetics of adsorption followed the pseudo first order model. Also, the negative values of Gibbs free energy (-4.51~-13.44 kJ/mol) and positive enthalpy (128.97 kJ/mol) indicated that the adsorption was spontaneous and endothermic process. The isosteric heat of adsorption increased with increase in the surface loading indicating lateral interactions between the adsorbed dye molecules.
  1. Rafatullah M, Sulaiman O, Hashim R, Ahmad A, J. Hazard. Mater., 177(1-3), 70 (2010)
  2. Dorgan M, Ozdemir Y, Alkan M, Dyes Pigment., 75, 701 (2007)
  3. Demirbas A, J. Hazard. Mater., 167(1-3), 1 (2009)
  4. An SY, Min SK, Cha IH, Choi YL, Cho YS, Kim CH, Lee YC, Biotechnol. Prog., 24, 1037 (2002)
  5. Jiang XF, Huang JH, J. Colloid Interface Sci., 467, 230 (2016)
  6. Patil SP, Bethi B, Sonawane GH, Shrivastava VS, Sonawane S, J. Ind. Eng. Chem., 34, 356 (2016)
  7. Rasalingam S, Peng R, Koodali RT, Appl. Catal. B: Environ., 174-175, 49 (2015)
  8. Wan D, Li WB, Wang GH, Chen K, Lu LL, Hu Q, Appl. Surf. Sci., 349, 988 (2015)
  9. Zhang Y, Wang J, Wang L, Feng R, Zhang F, J. Mol. Struct., 1089, 116 (2015)
  10. Wang L, Zhang J, Zhao R, Li C, Li Y, Zhang CL, Desalination, 254(1-3), 68 (2010)
  11. Namasivayam C, Yamuna RT, J. Chem. Technol. Biotechnol., 53, 153 (1992)
  12. Lata H, Mor S, Garg VK, Gupta RK, J. Hazard. Mater., 153(1-2), 213 (2008)
  13. Namasivayam C, Kavitha D, Dyes Pigment., 54, 47 (2002)
  14. Lee JJ, Appl. Chem. Eng., 26(5), 581 (2015)
  15. Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
  16. Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almeida VC, Chem. Eng. J., 181-182, 243 (2012)
  17. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
  18. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
  19. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
  20. Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)
  21. Xing G, Liu S, Xu Q, Liu Q, Carbohydr. Polym., 87, 1447 (2012)
  22. Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)
  23. Anirudhan TS, Radhakrishnan PG, J. Chem. Thermodyn., 40(4), 702 (2008)
  24. Dogan M, Alkan M, J. Colloid Interface Sci., 267(1), 32 (2003)
  25. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)