화학공학소재연구정보센터
Process Biochemistry, Vol.47, No.12, 1980-1987, 2012
Urinary metabonomics study on the protective effects of ergosta-4,6,8(14),22-tetraen-3-one on chronic renal failure in rats using UPLC Q-TOF/MS and a novel MSE data collection technique
Ergosta-4,6,8(14),22-tetraen-3-one (ergone), isolated from the medicinal fungus Polyporus umbellatus, has been proven to prevent the progression of renal injury and the subsequent renal fibrosis. UPLC Q-TOF/MS was employed to investigate the metabonomic characteristics of adenine-induced chronic renal failure (CRF) and the proactive effects of ergone. The significant difference of the metabolic profiling was observed from ergone-treated group compared with the CRF model group during the 10-day and 20-day study periods by using the principal components analysis (PCA). The significant difference of the ergone-treated group in metabolic profiling was also observed between 10-day and 20-day study periods. The time-dependent tendency in ergone-treated group from day 10 to 20 was obtained, indicating the time-dependent recovery effect of ergone on CRF rats. Some significantly changed metabolites like creatinine, proline, adrenosterone, taurine, creatine, phenylalanine, ornithine, dopamine, kynurenine, kynurenic acid and 3-O-methyldopa have been identified during the 20-day study period. These biochemical changes are related to the disturbance in energy metabolism and amino acid metabolism, which are helpful to further understand the CRF and the therapeutic mechanism of ergone. This work suggests that this metabonomic approach could be used as a potentially powerful tool to investigate the biochemical changes of certain physiopathological conditions, such as metabolic syndrome, as an early diagnostic measure. (C) 2012 Elsevier Ltd. All rights reserved.