화학공학소재연구정보센터
Process Biochemistry, Vol.47, No.12, 2123-2130, 2012
Domain replacement to elucidate the role of B domain in CGTase thermostability and activity
The B domain of CGTase has been generally accepted as a domain involved in thermostability. However, limited work has been performed in which entire B domain is substituted with the thermostable counterpart. Using overlap extension PCR, we replaced the B domain of a variant of CGTase Bacillus sp. G1 by six other B domains from thermostable CGTases. Likely due to distortion in the substrate-binding cleft adjacent to the active site, variants with the domain replacements from Thermoanaerobacter, Thermococcus, Thermococcus kodakarensis, Anaerobranca gottschalkii and Pyrococcus furiosus completely lost their catalytic function. A mutant designated Cgt_ET1 with a domain replacement from a Bacillus stearopthermophilus ET1 CGTase was the only variant that retained activity after domain exchange. Both the parental enzyme and the mutant Cgt_ET1 had an identical optimum temperature at 60 degrees C. The activity half-life was 22 min for the parental CGTase, whereas a marked increase to 57 min was observed for the mutant. Further mutagenesis on Cgt_ET1 was performed at residue 188 by replacing a Phe residue with Tyr. The mutant Cgt_ET1_F188Y displayed a decreased activity half-life of 28 min. Both mutants exhibited a better cyclodextrin-forming ability and a faster turnover rate (k(cat)) than the parental CGTase. (C) 2012 Elsevier Ltd. All rights reserved.