화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.100, No.5, 2213-2224, 2016
Assessment of bacterial and fungal (hemi)cellulose-degrading enzymes in saccharification of ammonia fibre expansion-pretreated Arundo donax
This study reports enzymatic hydrolysis of the biomass of the giant reed (Arundo donax L.) after ammonia fibre expansion (AFEX) pretreatment. In particular, the capacity of the arabinofuranosidase from the fungus Pleurotus ostreatus recombinantly expressed in Pichia pastoris rPoAbf, its evolved mutant rPoAbf F435Y/Y446F and the endocellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli to enhance the hydrolysis of AFEX-treated A. donax was investigated, using the corn stover as reference feedstock. The investigated enzymes were assayed using a mixture of purified cellulases (CBHI, CBHII, EGI and beta G), endoxylanases (LX3, LX4) and accessory hemicellulases (LarbF and L beta X) as reference enzyme mixture and substituting EGI with rCelStrep and LarbF with rPoAbf or rPoAbf F435Y/Y446F. The use of rPoAbf F435Y/Y446F in the substitution of LarbF led to improvements in sugar conversion, giving a glucan, xylan and arabinan conversion after 72 h of around 62, 63 and 80 %, respectively, similar or higher than those (44, 66 and 55 %) achieved by 72 h hydrolysis with commercial enzymes Novozymes Cellic (R), Ctec3 and Htec3. The enzymes rPoAbf, rPoAbf F435Y/Y446F and rCelStrep were also investigated for their effect on hydrolysis of AFEX-pretreated A. donax by addition to commercial enzyme mixture Novozymes Cellic (R), Ctec3 and Htec3, and it was shown that the addition of rPoAbf and its evolved mutant rPoAbf F435Y/Y446F enhanced both xylan and arabinan conversions, which achieved 80 % after 6 days of saccharification with rPoAbf F435Y/Y446F.