Biochemical and Biophysical Research Communications, Vol.468, No.1-2, 196-201, 2015
Dehydroepiandrosterone-enhanced dual specificity protein phosphatase (DDSP) prevents diet-induced and genetic obesity
Dehydroepiandrosterone (DHEA) exerts a wide variety of therapeutic effects against medical disorders, such as diabetes and obesity. However, the molecular basis of DHEA action remains to be clarified. Previously, we reported that DHEA-enhanced dual specificity protein phosphatase, designated DDSP, is one of the target molecules of DHEA. To examine the role of DDSP in DHEA signaling, we generated mice that carry a DDSP transgene in which expression is driven by the CAG promoter (DDSP-Tg). DDSP-Tg mice weighed significantly less than wild-type (WT) control mice when a high fat diet was supplied (p < 0.01). No difference in food-intake or locomotor activity was found between DDSP-Tg and WT mice. Oxygen consumption of DDSP-Tg mice was higher than that of WT mice (p < 0.01), which suggested an increase in basal metabolism in DDSP-Tg mice. To further investigate the role of DDSP in genetic obese mice, DDSP-Tg mice with a db/db background were generated (DDSP-Tg db/db). We observed cancellation of obesity by the db/db mutation and development of a cachexic phenotype in DDSP-Tg db/db mice. In conclusion, our study shows that expression of DDSP leads to prevention of diet-induced and genetic (db/db) obesity. Anti-obese effects of DHEA might be mediated through DDSP, which might be a therapeutic target for intervention of obesity. (C) 2015 Elsevier Inc. All rights reserved.
Keywords:Dehydroepiandrosterone;DHEA-enhanced dual specificity protein phosphatase;Obesity;p38 MAPK;Leptin