화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.468, No.1-2, 281-286, 2015
CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells
The epithelial-to-mesenchymal transition (EMT) plays an important role in the progression of diabetic nephropathy. Our recent study showed that ROS mediated high glucose (HG)-induced EMT in renal tubular epithelial cells. CD36, a class-B scavenger receptor, has been reported to mediate the production of ROS in chronic kidney disease. In the present study, we examined the effect of inhibition of CD36 with CD36 siRNA or sulfosuccinimidyl-oleate (SSO), a CD36 antagonist, on HG-induced EMT in HK-2 cells. HG induced CD36 expression in a time-dependent manner in HK-2 cells. HG was shown to induce EMT at 72 h. This was blocked by knockdown of CD36 or treatment with SSO. Meanwhile, we also found that knockdown of CD36 or treatment with SSO inhibited HG-induced ROS generation, activation of ERK1/2 and Smad2, expression of TGF-beta 1 and synthesis of fibronectin. These data suggest that inhibition of CD36 prevented HG-induced EMT in HK-2 cells, highlighting CD36 as a potential therapeutic target for diabetic nephropathy. (C) 2015 Elsevier Inc. All rights reserved.