Biochemical and Biophysical Research Communications, Vol.463, No.4, 1012-1020, 2015
Tetrahydrobiopterin reverse left ventricular hypertrophy and diastolic dysfunction through the PI3K/p-Akt pathway in spontaneously hypertensive rats
Hypertension induced hypertrophy and diastolic dysfunction and is associated with cardiac oxidation and reduced NO production. We hypothesized that tetrahydrobiopterin (BH4) can regulate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway and reverse cardiac hypertrophy and diastolic dysfunction in spontaneously hypertensive rats. Ten-week-old male spontaneously hypertensive rats (SHR) and age-matched normotensive control Wistar-Kyoto (WKY) rats were divided into five groups, WKY, WKY + BH4, SHR, SHR + BH4 and SHR + VAL In SHR, diastolic dysfunction was accompanied by concentric hypertrophy, cardiac oxidation, and reduced cardiac BH4 and NO production. Four-week BH4 and valsartan administration reversed hypertrophy and improved diastolic function. BH4 and valsartan blunted the expression of hypertrophy markers a-skeletal actin (alpha-SA) and beta-myosin heavy chain (beta-MHC). Only BH4 reduced hypertension and induced myocardial fibrosis and expression of transforming growth factor-beta 1 (TGF-beta 1). BH4 reduced cardiac oxidant stress and increased NO production. Exogenous BH4 increased phosphorylated Akt levels and increased Bcl-2 expression. In conclusion, less BH4 and reduced NO increases myocardial hypertrophy and cardiac oxidative stress, which exacerbates diastolic dysfunction. Exogenous BH4 ameliorates cardiac hypertrophy and diastolic dysfunction through the PI3K/p-Akt pathway. BH4 may be a potent therapy for hypertension with diastolic dysfunction. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).