Biochemical and Biophysical Research Communications, Vol.459, No.4, 643-649, 2015
Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway
Prolonged benzidine exposure is a known cause of urothelial carcinoma (UC). Benzidine-induced epithelial-to-mesenchymal transition (EMT) is critically involved in cell malignant transformation. The role of ERK1/2 in regulating benzidine-triggered EMT has not been investigated. This study was to investigate the regulatory role of ERK1/2 in benzidine-induced EMT. By using wound healing and transwell chamber migration assays, we found that benzidine could increase SV-HUC-1 cells invasion activity, western blotting and Immunofluorescence showed that the expression levels of Snail, beta-catenin, Vimentin, and MMP-2 were significantly increased, while, the expression levels of E-cadherin, ZO-1 were decreased. To further demonstrate the mechanism in this process, we found that the phosphorylation of ERK1/2, p38, JNK and AP-1 proteins were significantly enhanced compared to the control group (*P < 0.05). Afterward, treated with MAPK pathways inhibitors, only ERK inhibitor (U0126) could reduce the expression of EMT markers in SV-HUC-1 cells, but not p38 and JNK inhibitor (SB203580, SP600125), which indicated that benzidine induces the epithelial mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Taken together, findings from this study could provide into the molecular mechanisms by which benzidine exerts its bladder-cancer-promoting effect as well as its target intervention. (C) 2015 Elsevier Inc. All rights reserved.